
VESTA: Power Modeling with Language Runtime Events

JOSEPH RASKIND, SUNY Binghamton, USA

TIMUR BABAKOL, SUNY Binghamton, USA

KHALED MAHMOUD, SUNY Binghamton, USA

YU DAVID LIU, SUNY Binghamton, USA

Power modeling is an essential building block for computer systems in support of energy optimization, energy

profiling, and energy-aware application development. We introduce Vesta, a novel approach to modeling the

power consumption of applications with one key insight: language runtime events are often correlated with a

sustained level of power consumption. When compared with the established approach of power modeling

based on hardware performance counters (HPCs), Vesta has the benefit of solely requiring application-scoped

information and enabling a higher level of explainability, while achieving comparable or even higher precision.

Through experiments performed on 37 real-world applications on the Java Virtual Machine (JVM), we find the

power model built byVesta is capable of predicting energy consumption with amean absolute percentage error

of 1.56%, while the monitoring of language runtime events incurs small performance and energy overhead.

CCSConcepts: • Software and its engineering→Virtualmachines;Runtime environments; •Hardware

→ Power estimation and optimization.

Additional Key Words and Phrases: power modeling, language runtimes, Java virtual machines, BPF

ACM Reference Format:

Joseph Raskind, Timur Babakol, Khaled Mahmoud, and Yu David Liu. 2024. VESTA: Power Modeling with

Language Runtime Events. Proc. ACM Program. Lang. 8, PLDI, Article 172 (June 2024), 26 pages. https:

//doi.org/10.1145/3656402

1 INTRODUCTION

As of 2023, data centers constitute approximately 2% of total electricity consumption in both the
US [39] and the EU [38]. Tools for tracking the energy and power consumption of the computing
stack allow developers to build more energy-conscious systems [4, 15, 37, 53] and contribute in
sustainable computing [17, 21, 23, 35]. Broadly speaking, power consumption can be tracked in two
ways:measure it ormodel it. Measurement-based approaches require meter deployment and physical
access to the computing platform. In contrast, modeling-based approaches are easy to deploy and
have gained popularity over the years. The most established approach for power modeling relies
on monitoring architectural events—e.g., Hardware Performance Counters (HPCs)—and predicting
power consumption based on their occurrences [6, 7, 9, 26–29, 36, 51, 52].

A key insight of this paper is that language runtime events may impact the power behavior of the
application, and the correlation of the two may open up a new avenue for building power models.
Take Java applications for example. Intuitively, the diverse behavior of their runtime—e.g., heap
management, thread management, just-in-time compilation (JIT), and garbage collection (GC)—may
impact how the underlying systems and hardware are used. Compared with HPC-based power

Authors’ addresses: Joseph Raskind, jraskin3@binghamton.edu; Timur Babakol, tbabako1@binghamton.edu; Khaled Mah-

mous, kmahmou1@binghamton.edu; Yu David Liu, davidl@binghamton.edu.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/6-ART172

https://doi.org/10.1145/3656402

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

https://creativecommons.org/licenses/by-nc/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0009-0003-3694-8207
HTTPS://ORCID.ORG/0009-0003-5476-1518
HTTPS://ORCID.ORG/0009-0003-0122-7944
HTTPS://ORCID.ORG/0000-0002-2768-3898
https://doi.org/10.1145/3656402
https://doi.org/10.1145/3656402
https://doi.org/10.1145/3656402


172:2 Joseph Raskind, Timur Babakol, Khaled Mahmoud, and Yu David Liu

Table 1. Power-Tracking Approaches

Approach Type Deployment Explainability Security Implications

meter-based measurement peripherals
needed

no physical access

RAPL-based measurement specific to
CPU design

physical access whole-system info

HPC-based modeling friendly physical access whole-system info

VESTA modeling friendly (more) logical access per-application info

modeling, a language runtime-level model has two main advantages: reduced security concerns and
a higher level of explainability. Runtime-level events are produced in the scope of the application,
as opposed to system-wide information such as HPCs. Requiring access to system-wide information
(for power modeling) has its own security implications [14, 25, 31]. Furthermore, language runtime
events—coming from a higher level of the computing stack—provide a more logical cause-effect
understanding of how an application’s design and execution impact power consumption.
Concretely, we introduce Vesta

1, a novel power modeling system that bases its predictive
abilities on language runtime events in the Java Virtual Machine (JVM). Vesta must address
several design challenges. Unique to language runtime events is that they are routinely split-

phase: when a long field of an object is accessed, the JVM does not produce one event but
two: an event GetLongField__entry that indicates the access has begun, and another event
GetLongField__return that indicates the access has completed. In contrast, HPC events are
generally ephemeral: a cache miss event is produced when it is happening now. For Vesta, address-
ing split-phase events for power modeling is the rule not the exception. In addition, the design of
Vesta must address the diversity of JVM-traceable events—in the hundreds—and rein in on the
classic challenges of reducing overhead and improving precision.
We use Vesta to model the power consumption of 37 real-world applications running on

the OpenJDK. Results show that the power model built by Vesta is capable of predicting their
energy consumption with a mean absolute percentage error (MAPE) of 1.56% while incurring small
overhead. This is consistent with state-of-the-art HPC-based power modeling where the reported
error is generally 3-10% [5, 7, 26, 36, 52]. For experimental comparison, we also (re-)implemented
the HPC-based power modeling approach and ran it over the same applications, with a MAPE
consistent with their reports.
To the best of our knowledge, Vesta is the first system to use language runtime events—JVM

events in our case—for predicting power consumption. The contributions of this paper are:

• a methodology that uses language runtime events to build power models;
• a design that systematically and automatically selects JVM events for power modeling from
the complete set of User Statically Defined Tracepoint (USDT) probes [40], and addresses the
split-phasedness of JVM events;

• a system that predicts energy consumption with high accuracy and low overhead, and a
decision tree-based model for explaining the impact of JVM events on energy prediction.

2 MOTIVATIONS

In this section, we motivate the design of Vesta by answering two questions: how Vesta differs
from existing approaches, and what challenges an approach such as Vesta must address. From
now on, we will use term runtimes (as in “runtime systems”) to refer to language runtimes.

1
Vesta is a goddess in Roman mythology. According to Ovid, Vesta derives from Latin vi stando, or “standing by power.” In

our context, Vesta stands for Virtual Energy System for Tracking and Analysis.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.



VESTA: Power Modeling with Language Runtime Events 172:3

Table 2. JVM Event Examples (A full list of OpenJDK-traceable events can be found here [40]).

Event Name Description

GetLongField__entry, GetLongField__return return the long field value of an object

GetMethodID__entry, GetMethodID__return return method ID

gc__begin, gc__end start system-wide garbage collection

GetObjectClass__entry,
GetObjectClass__return

return the class of an object

compiled__method__load JIT-compile a method

Throw__entry, Throw__return throw an exception

NewStringUTF__entry, NewStringUTF__return
construct a String object from an char-
acter array in modified UTF-8 encoding

safepoint__begin, safepoint__end
reach a "safepoint" for state examina-
tion, e.g., garbage collection

thread__sleep__begin, thread__sleep__end invoke a thread Thread.sleep()

vmops__begin, vmops__end call a JVM bookkeeping operation

2.1 Tracking Power across the Systems Stack

From an end-user perspective, power can be tracked either through measurement or modeling. A
summary of these approaches can be found in Table 1.

Power can be measured either through a physical meter, or through consulting power-reporting
architecture features [13]. Measurement-based approaches are straightforward to use for the end
user, but they come with some limitations. First, they are subject to deployment availability: the
deployment site of the application must be either equipped with a meter, or built with architectures
that support energy readings, such as Intel’s RAPL [13] (see §6). Second, measurement approaches
offer little explainability: the readings do not explain how or why energy is consumed.
Modeling-based approaches are more friendly for deployment. HPC-based power modeling

approaches share one common insight: power consumption is the effect of hardware use, and hence,
power can be modeled by tracking how intensely each architecture component is used, as indicated
by HPCs such as cache miss rates. These approaches provide insights on physical explainability:
the weights associated with each HPC in the model can identify hardware components that play
more critical roles in power consumption. The most successful use of HPC-based power models is
perhaps power simulation [5, 7, 26, 36, 52] in cycle-accurate simulators.
When HPC-based approaches are used for workload power prediction, one drawback is that

HPCs are system-wide information whose access has security implications [14]. Under the threat
model that the underlying OS may not fully trust the application running on top, giving away
system-wide HPC information to applications is a violation of Principle of Least Privilege, and as a
result, HPC-based power modeling is best suited for kernel-space whole-system power modeling.
This requirement may limit their applicable use scenarios (see § 3.5). In addition, HPC-based power
modeling assumes a hardware-centric view for power modeling: its power prediction is based on
the hardware states (e.g., cache or TLB)—blind to the software eco-system running on top of the
hardware—hence offering little insight on application-level explainability.

2.2 Challenges with Runtime-Level Power Modeling

In contrast, Vesta is a runtime-level approach to power modeling. While power modeling at this
layer comes with unique benefits (see Table 1), constructing a power model on top of runtime

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.

https://docs.oracle.com/javase/8/docs/technotes/guides/vm/dtrace.html


172:4 Joseph Raskind, Timur Babakol, Khaled Mahmoud, and Yu David Liu

events is challenging. While some challenges are common for all power modeling approaches (e.g.,
overhead and precision), our approach calls for distinct solutions.

2.2.1 Challenge I: Diversity and Dimensionality. The first step of building a power model is to
determine what factors may have impact on power consumption. For HPC-based approaches, this is
straightforward. Given an architecture, the number of HPC events that can be tracked is relatively
small. For example, there are 60 HPCs for the Intel Xeon E5-3630 v4, the platform we run our
experiments on. Starting from a relatively small set, one can rely significantly on domain knowledge

while constructing HPC-based power models. For example, to model the power consumption of
a TLB, there are only a handful of HPCs related to TLB behavior, and their impact on power
consumption can often be analytically derived a priori [26]. As a result, a manual selection of HPCs
relying on domain knowledge is not only sensible, but also effective.

In contrast, manual selection based on domain knowledge is unlikely to work for runtime events.
First, runtime events are much more diverse. This is particularly true for managed languages—the
focus of Vesta—where the runtime events not only come from the application logic, but also come
from the virtual machine maintenance, such as JIT and GC. For instance, OpenJDK comes with
520 traceable USDT probes, i.e., the candidate events. The events are usually diverse: in Table 2,
we show a small subset of events. Handpicking a subset of JVM events does not scale. Second,
deriving analytical power models a priori is beyond the skills of domain experts. For example, while
JVM experts can confirm that GC has high impact on energy consumption [24, 47], it remains too
challenging to manually derive a mathematical model a priori that connects GC events with power.

10 20 30 40 50 60 70
Num Probes Tracked

0%

2%

5%

8%

10%

12%

15%

O
ve

rh
ea

d 
Pe

rc
en

ta
ge

Fig. 1. Wall-Clock Execution Time Over-
head (The X-axis shows the number of JVM
events monitored at the same time. The
events are randomly selected. The Y-axis
shows the average execution time across
all benchmarks monitored in experimental
se�ings described in § 5.1.)

2.2.2 Challenge II: Overhead. Given that manual selec-
tion of events is impractical, a naive solution would be to
track’em all: building a power model based on all events
and let the (automated) statistical analysis handle the rest.
However, this approach comes with a prohibitive cost.
While overhead is inherent for building power models,
the problem is amplified at the JVM level where hundreds
of events could potentially be tracked. Figure 1 shows
the trend of the average execution time overhead when
a random subset of JVM events are monitored together.
Overhead is a significant design concern for building

power models for two reasons. First, it is undesirable for
a monitored application to experience significant per-
formance degradation from the perspective of end-user
quality of service. Second, significant overhead is a symp-
tom of perturbation of the original (i.e., unmonitored)
application behavior. Indeed, when overhead reaches an
extent—2x for example— it becomes a principled concern:
the power model no longer characterizes the behavior of
the application, but the event tracking logic itself.

2.2.3 Challenge III: Split-Phase Events. As we discussed in § 1, JVM events are often split-phase, in
pairs with an entry event (signifying the beginning of an operation) and an exit event (signifying the
end of an operation). From now on, we call a JVM event that is not split-phase an ephemeral event.
In Table 2, all example events except one are split-phase. Indeed, this composition is representative:
Split-phase events comprise 94% of all USDT probes that can be traced as JVM events. The dominat-
ing presence of split-phase events—as opposed to their non-presence in HPCs—reveals a difference

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.



VESTA: Power Modeling with Language Runtime Events 172:5

in software and hardware: whereas most hardware events can be viewed “atomically”—e.g., a cache
miss happens at a snapshot in time—a software event generally lasts for a duration of time.
Split-phase events introduce a unique challenge for runtime-level power modeling. Between

GetLongField__entry and GetLongField__return, the application is in the state of accessing a
long field. Intuitively, it is the duration when the application stays within this state that a stable
level of power should be correlated to.
Pairing split-phase events per se is not hard: the names of the events are descriptive on pair-

ing. The question is how to monitor them. Naively, one may imagine a monitoring algorithm
that tracks whether the application is in the state of GetLongField or not. Unfortunately, state
tracking is non-binary for real-world multi-threaded applications. Multiple threads could trigger
GetLongField__entry and GetLongField__return concurrently, and it is possible that a pro-
gram is in a state where five GetLongField__entry events have been issued, but no corresponding
GetLongField__return event is issued. This five-event state should be treated differently from
one where only one GetLongField__entry is issued. In other words, this quantitative information
characterizes how intensive memory access is happening, which should be used for power modeling.
When no confusion can arise, we refer to a split-phase event - when there are a pair of events

-__entry and -__return that can be monitored by the JVM.

Pairing Selection Instrumen-
tation

Timestamped Energy Data

Monitored 
Application

B
uc

ke
te

d 
En

er
gy

Bucketing

Model

Synth Events

Synth Events
Synthesis

Model
Building

Prediction

Timestamped Event Data

USDT Probes Paired Events Monitored Events

M
onitored Events

B
ucketed Events

Legend

VESTA
Component

Application

Training &
Inference

Training
Only

Inference
Only

Fig. 2. The Design of Vesta (For training, follow solid green arrows and
dashed blue arrows. For inference, follow solid green arrows and do�ed
yellow arrows.)

2.2.4 Challenge IV: Precision.

Prior HPC-based power model-
ing techniques predominantly
use linear regression (LR) to
predict power consumption [7,
26, 52]. LR is suitable in their
approaches because its use is
aligned with our intuition on
how hardware is used: the
power consumption of the en-
tire system is the sum of the con-
sumption from individual hard-
ware components. If a cache con-
sumes 3W and a TLB consumes
4W, the combined power con-
sumption of the cache and the
TLB is 7W. In other words, hard-
ware power consumption is ad-
ditive. The impact of runtime
events on power consumption
is however more complex. The
events collectively influence the
power state of the underlying
system, but does additivity hold?

3 VESTA DESIGN

3.1 Overview

Fig. 2 shows the overall design of Vesta. As a power modeling tool, Vesta operates in two
(standard) modes: training and inference. During training,Vesta can be viewed as a runtimemonitor
that tracks two pieces of information: the occurrence of runtime events, and the power/energy

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.



172:6 Joseph Raskind, Timur Babakol, Khaled Mahmoud, and Yu David Liu

consumption of the system. The output of training is a power model, i.e., a function P(INT) ⇀

REAL that takes in the occurrence of runtime events and computes a power consumption value.
During inference, Vesta only monitors the occurrence of runtime events, applied to the power
model for the predicted power consumption.

Event Domain. Given the complex runtime behavior to capture, the domain of runtime events
is important for power modeling. Our domain of choice is USDT probes, motivated by several
considerations. First, the 520 USDT probes available for JVM monitoring cover a broad spectrum of
behavior in managed language runtimes, from object-oriented (OO) semantic features (e.g., heap
management, method calls, class loading), non-OO features (e.g., primitive data access, exception
handling, JNI), to VM services (e.g., JIT, GC, thread management), to VMmetadata management (e.g.,
VM operations, safepoint management). Given that a higher dimensionality is innate with the
runtime-based approach (Challenge I), USDT probes provide a comprehensive base set of candidate
events for Vesta to sift through. Second, the interface of USDT probe tracing is (largely) language-
agnostic. While we currently focus on JVM, the support of USDT probes for other language runtimes
is helpful for porting the idea of Vesta in the future. Third, USDT probe tracing has native support
on most Linux distributions, facilitating the adoption of Vesta.

VestaWorkflow. During training, Vesta first takes all available USDT probes amenable to the
JVM and pairs them into split-phase events when possible. This is a simple process where a
pair of USDT probes with __entry and __return suffixes are grouped together; for subsequent
steps of the workflow, whenever a split-phase event is selected to be monitored, its pair of USDT
probes are both monitored. Vesta selects runtime events so that those whose monitoring incurs a
large overhead are removed from the consideration of power modeling. The remaining events are
monitored through instrumentation to the monitored application. For each monitored application,
its execution produces a trace of energy data and a trace of event data, both time-stamped. To build
a power model, we bucket them into fixed-size time intervals, i.e., grouping all events that happen
within the same time interval together. In other words, our model building is based on a data set
where each time interval is a unit: we correlate the events that happen in the time interval and the
power consumption of the time interval. For now, let us focus on two aspects of Vesta’s design:
how to reduce overhead and how to handle split-phase events, in the next two subsections.

3.2 Event Selection

Due to Challenge II, it is impossible to track all USDT probes available to the JVM for power
modeling without invoking an unacceptable overhead. Additionally, the tools available ready-at-
hand to track USDT probes have a distinct upper limit of probes one can track during a given
application run. In Vesta, we define a percentage threshold T, and classify all post-pairing events
into three categories: under-threshold, over-threshold, and rare. Under-threshold events incur an
execution time overhead of less than T for all benchmarks we build our model with. An event
is considered over-threshold if any benchmark incurs an execution time overhead greater than
T. Rare events are infrequently encountered, defined as not occurring in any benchmark. Only
under-threshold events participate in the building of a power model.

Our universally quantified requirement of thresholding reflects our performance-biased philos-
ophy that “no workload should be left behind”: we should not choose events that can improve
the (average) precision of power modeling at the sacrifice of drastic performance degradation of
some workloads. We believe that each application in a benchmark suite reflects a unique type of
workload, so all must concur that the overhead is acceptable before an event is chosen. Our design
decision of removing rare events is driven by the fact that monitoring such events is analogous to
mitigating the long-tail at the sacrifice of overall performance.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.



VESTA: Power Modeling with Language Runtime Events 172:7

3.3 Split-Phase Event Synthesis

1

2

2

3 D
ep

th

Ti
m

e 
In

te
rv

al

Fig. 3. An Example of Split-Phase Event Syn-
thesis (C1, C2, C3, and, C4 refer to four distinct,
temporally adjacent time intervals, elaps-
ing from C1 to C4. For event E, green circles
represent its entry probes and red circles
represent its exit probes. The boxes on the
right refer to the depth for event E at the
time interval a�er synthesis.)

As Challenge III requires, Vesta must account for the
stateful nature of the events: they are mostly split-phase
in the JVM. In addition, we also mentioned that the sup-
port for multi-threading concurrent applications dictates
that the occurrence in a time interval is not binary.
Vesta introduces event synthesis to maintain the oc-

currences of a split-phase event. Intuitively, we pair up
entry and exit type events so that the time intervals in
between are viewed as when the (synthesized) event is
happening. The events are recorded globally, i.e., Vesta
counts the occurrence of events in a time interval from
all threads, not in a per-thread manner. This is necessary
because modern hardware does not have per-core power
domains. In other words, we can only obtain a power
reading from all cores residing on the same socket, not
individually. For that reason, per-thread event readings
would not be useful in power model building.

Specifically, recall that we use a split-event - to refer
to a pair of USDT probes (i.e., -__entry and -__exit.)
From the first time interval (indexed by 1) of the execu-
tion sequence onward, Vesta progressively—i.e., interval by interval—maintains an accumulated

imbalance score (AIS) for each split-event, defined as:

AIS= = AIS=−1 + N= − X= and AIS0 = 0

where AIS: is the AIS for time interval : where : ≥ 0, N: is the number of entry-suffixed events
encountered in interval : , and X: is the number of exit-suffixed events encountered in interval : .
Intuitively, AIS tracks the number of events started but not yet completed at the end of each time

interval. We further define the depth of an event at time interval : , denoted as D: where : > 0, as:

D=
= AIS= + X=

D: captures event intensity, i.e., the maximum number of events that has started but not completed
during the time interval. From an implementation perspective, depth is used by Vesta for building
and using our power model (while AIS is only a “conceptual” metric to help readers understand the
definition of the depth). Depth computation is efficient: it is a linear scan across time intervals.

We now use an example to demonstrate the bookkeeping of this value. Fig. 3 describes a scenario
for event E. At C1, the entry probe for E is encountered, thus increasing the depth of E from 0
to 1. At C2, another entry probe for E is recorded and, since no exit probe has fired, the depth is
incremented once more. At C3, we encounter yet another entry probe, but now accompanied by
an exit probe; the exit probe allows Vesta to reduce the depth as we have “exited” the original
entry. At C4, depth reduces to 2 with the encounter of one exit probe. The depth of an event is
related to the maximum occurrence of an unbalanced entry probe during the time interval, this is
why the depth is 3 at C3 despite the presence of an exit probe while AIS3 = 2.

3.4 Model Building

We attempted a variety of modeling techniques, ranging from LR, decision trees, and neural
networks. As it turns out, both LR and neural networks produced suboptimal results. The model
choice of Vesta is XGBoost, a decision tree model based on the idea of gradient boosting [12].

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.



172:8 Joseph Raskind, Timur Babakol, Khaled Mahmoud, and Yu David Liu

3.5 Applicability and Use Scenarios

Language Runtimes. Vesta is implemented over the JVM, with direct beneficiaries being applica-
tions written in Java or other JVM-based languages such as Scala. Our benchmarks are Java and
Scala applications. The domain of runtime events covers a wide range of behavior of managed
runtimes, so we speculate that the high-level wisdom—e.g., what runtime events are important for
power modeling—may transcend to other managed language runtimes, such as Javascript, Python,
C#, and Go, although the model itself must be rebuilt with the language-specific benchmarks.
Thanks to the support of USDT probes for C and C++, interfacing Vesta with unmanaged language
runtimes does not alter the high-level design and the workflow we described in Fig. 2.

Power Modeling and Workloads. Research on power modeling is motivated to confirm feature

predictability, implicitly parameterized by the workloads/applications over which the model is built.
In the presence of new workloads, the model in principle needs to be rebuilt. In other words, the
real news is not the specific values of model parameters produced by Vesta, but the confirmation

that a subset of language runtime events can predict power. In practice, power models are most
successful [7, 26, 36] for predicting the power consumption of known workloads but over unknown
traces (or “known unknowns”). Generally speaking, it is a non-goal to build a power model over
sunflow, and use it to predict the power consumption of xalan.
This latter goal is faced with a largely orthogonal challenge: the coverage and quality of the

training data set. In other words, while the trace data from sunflow alone cannot build a model to
accurately predict xalan—which is confirmed by our experiments—one may curate a large set of
applications that hopefully capture (empirically) every form of workload, and the model training
over their traces can predict the power behavior of xalan. Intuitively this form of “unknown
unknowns” prediction—predicting the power consumption of unknown workloads over unknown
traces—can be viewed as a special form of our “known unknowns” prediction when the number of
diverse training applications reaches infinity. We revisit this potential in § 7. The role of Vesta in
this potential future direction is a confirmation of predictability: without Vesta, this latter pursuit
would be a blind effort solely by increasing the number of training data.

Intended Use Scenarios. As an end-user tool, Vesta is intended for server-type environments
(e.g., cloud providers), useful at least in two scenarios:

• Servers with large power footprints and long longevity. Energy accounting for these systems is
critical both because of their significant instantaneous power, and of their large (accumulative)
energy consumption. To applyVesta, the model is initially trained on the server, and retrained
when system configuration changes or when a new workload emerges. In this latter scenario,
only the data for that new workload needs to be collected. Vesta training after data collection
is efficient: the time of building a model is under a minute for all experiments described
in this paper (§ 5). This work flow is also in sync with our discussion earlier on unknown
workloads. As time goes on, when the applications used for training reaches a diverse large
set, it de facto becomes an “unknown unknowns” power model.

• Service providers and clients in need of explainable and auditable energy consumption. For a
cloud provider that offers energy-based pricing models, individual clients are charged based
on the energy consumption of their payload applications. Without Vesta, the only possible
approach would be to have the server provider measure the energy consumption (via RAPL
or meters) and communicate such information to the individual cloud client. Vesta however
offers a form of audit between the cloud provider and the client: the client can verify that—
through the ebbs and flows of language runtime events—the energy consumption claimed by
the cloud provider indeed matches her own estimate (or not). Furthermore, explainability

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.



VESTA: Power Modeling with Language Runtime Events 172:9

entails a better understanding on what exactly she pays for, in the similar vein as why one
prefers itemized utility bills.

Beyond tool building, Vesta plays a fundamental role in revealing the deep connection between
JVM events and power consumption. Not only confirming this connection, Vesta shows that the
connection is so strong that the latter can be quantitatively derived from the former.

4 VESTA IMPLEMENTATION

USDT Probe Tracing. USDT tracing through instrumentation is supported by BPF Compiler
Collection (BCC), a toolkit on Linux.When provided with a list of probes to trace, BCC automatically
instruments the application with trace points. The resulting event trace, where the occurrence of
each event is timestamped, is kept in a perf buffer, which is in turn read by Vesta. We found the
default BCC perf (ring) buffer size of 8 pages to be insufficient (see § 5.7), resulting in many losses
in the event logging. We set the size to 2048 pages.

Power/Energy Tracing. During training, Vesta periodically samples the RAPL interface of our
Intel-based platform for obtaining the energy consumption of the time interval through a tool called
jRAPL [32], which provides a convenient interface for Java-RAPL interaction. Power consumption
is calculated by dividing it with the length of the interval. The energy readings consist of energy
consumption of (i) all cores of all sockets; (ii) all uncore components (caches, etc); (iii) memory
controllers. To generate the power trace, each power sample is also timestamped.
We rely on C’s clock_gettime() function for retrieving timestamps, with CLOCK_MONOTONIC

as the argument. This function allows us to retrieve a monotonically increasing timestamp with
nanosecond resolution. We decided not to use Java’s nanoTime() function as its documenta-
tion states “no guarantees are made except that the resolution is at least as good as that of
currentTimeMillis().”2 For event traces, BCC already reports with nanosecond precision.

Benchmark Selection. All experiments for Vesta were performed using 37 state-of-the-art ap-
plications from two benchmark suites: DaCapo [8] and Renaissance [44]. All benchmarks are
multi-threaded. Both benchmark suites provide their user the ability to create Java callback plugins
which we used to collect runtime energy data and information about each run. We created two sets
of callback plugins: one for event selection (where one single event is instrumented) and the other
for post-selection data collection (where multiple events are instrumented).

Table 3. Examples of : × 2 Cross-Validation. (Let �, �,
and � be benchmarks and �8 , � 9 , and �: be distinct
time intervals where 8 ∈ [1..3], 9 ∈ [1..4], and: ∈ [1..5].
Three experiment examples on data splits are shown.)

Train Test

�1, �4, �2, �3, �1, �2 �2, �3, �1, �3, �5, �4,

�2, �3, �2, �1, �4, �1 �3, �4, �1, �2, �5, �3

�2, �5, �1, �3, �2, �1 �4, �3, �2, �1, �3, �4

Model Building and Prediction. The align-
ment of the event trace and the power trace is
conducted after the execution is completed. We
first bucket event/power data into buckets, i.e.,
fixed-sized time intervals. When an event does
not occur, we use -1 as its depth. The readings
during the benchmark harness execution are ex-
cluded. The bucket size is 1 second, identical to
existing HPC-based approaches [7, 26, 36]. This
is also in sync with our use scenarios (§ 3.5): the
long-running applications which do not com-
plete in seconds or sub-seconds. We run each benchmark for 256 iterations in one hot JVM run,
and discard the first 5 iterations to mitigate the effect of warmup. The rest of the data are used for
training and inference, as we describe next.

2From the Java System API.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.

https://docs.oracle.com/javase/8/docs/api/java/lang/System.html#nanoTime--


172:10 Joseph Raskind, Timur Babakol, Khaled Mahmoud, and Yu David Liu

Table 4. Post-Selection Events (Events with * mean they are empheral events, the rest are split-phase events.)

Event Category Events

Method
CallObjectMethod, CallVoidMethod,

GetMethodID

JIT
compiled__method__load*,
compiled__method__unload*,

method__compile

Type & Metadata Management
IsInstanceOf, GetObjectClass, GetEnv,

vmops, safepoint

Memory Management (GC) gc

Memory Management (Primitive)
NewString, NewStringUTF,

GetStringLength

Memory Management (Array)

GetByteArrayElements,
GetObjectArrayElement,

ReleaseIntArrayElements,
SetByteArrayRegion

Memory Management (Object) GetLongField, SetIntField

Exception Handling Throw

Concurrency thread__park, thread__sleep

To perform training and inference, we adopt the approach taken by McCullough et al. [36] in
their HPC-based power prediction: we utilize a : × 2 cross-validation. The ordering of the data
items (i.e., the per-interval occurrences of runtime events and energy consumption values), taken
from all benchmarks, is randomized and then split in half—one half (which may come from intervals
of various benchmarks) is used for training, and the other half for testing. Table 3 visualizes this
process. Our cross validation is repeated 10 times and the mean, and standard deviation for each
benchmark, can be found in Fig 5. Note that a methodology that would split over benchmarks for
training and testing is unsound (unless one has thousands of benchmarks), as we described in § 3.5.

Implementation Languages. The runtime monitoring core of Vesta is written in Java, with C
(JNI) code for low-level operations such as timestamping and energy sampling. The code base also
consists of Python and bash scripts for model building and setting up experiments.

5 VESTA EVALUATION

5.1 Experimental Se�ings

We evaluate Vesta on a dual socket Intel Xeon E5-3630 v4 2.20GHz CPU server with 20 cores per
socket (40 cores in total) and 64GB DDR4 RAM. The machine runs Debian 5.17.11-1, Linux kernel
5.17.0-3-amd64. All experiments were run with OpenJDK 19 with the ExtendedDTraceProbes flag
set. We used the latest builds of both DaCapo and Renaissance, versions evaluation-git+309e1fa
and 0.14.1 respectively. The default power governor in Linux is used, where Dynamic Voltage and
Frequency Scaling (DVFS) [10, 22] is enabled.

5.2 Event Selection

Vesta pairs all available USDT probes and then selects the events based on the methodology
described in §3.2, where the (relative) threshold is set as ) = 20%. Fig. 4 shows the results of this
selection.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.



VESTA: Power Modeling with Language Runtime Events 172:11

ak
ka

-u
ct al
s

av
ro

ra
ba

tik
bi

oj
av

a
ch

i-s
qu

ar
e

de
c-

tre
e

do
tty

fin
ag

le
-c

hi
rp

er

fin
ag

le
-h

ttp
fj-

km
ea

ns fo
p

fu
tu

re
-g

en
et

ic
ga

us
s-m

ix
gr

ap
hc

hi h2jm
e

jyt
ho

n

lo
g-

re
gr

es
sio

n
lu

in
de

x
lu

se
ar

ch

m
ne

m
on

ics
m

ov
ie

-le
ns

na
ive

-b
ay

es
pa

ge
-ra

nk

pa
r-m

ne
m

on
ics

ph
ilo

so
ph

er
s

pm
d

re
ac

to
rs

rx
-sc

ra
bb

le
sc

al
a-

do
ku

sc
al

a-
km

ea
ns

sc
al

a-
st

m
-b

en
ch

7
sc

ra
bb

le
su

nf
lo

w
xa

la
n

zx
in

g

Benchmark

0%

2%

5%

8%

10%
Pe

rc
en

t E
rr

or

Fig. 5. Vesta Precision (The Y-axis shows the MAPE of energy prediction normalized against the actual
consumption. Average n = 1.56%.)

UT OT R
Event Categories

0

50

100

150

E
ve

nt
 C

ou
nt

Fig. 4. Event Demographics (UT is under-
threshold, OT is over-threshold, and R is rare.)

Table 4 enumerates all events that remain after the se-
lection process. As seen here, the 24 events ultimately se-
lected for power model building remain diverse in scope.

5.3 Prediction

Fig. 5 shows the precision of Vesta, which relies on
the XGBoost-based decision tree model. With the power
model produced by Vesta, we are able to predict the
energy consumption of all benchmarks with a MAPE of
1.56%. The worst prediction among all 37 benchmarks
remains under 10%, showing that Vesta is capable of
describing energy consumption under diverse workloads.
Fig. 6 shows Vesta managed to predict 6 separate benchmarks. First, let us look at the highly

accurate top row on display (Figures 6a, 6b, 6c): where xalan transforms XML documents into
HTML, finagle-chirper simulates a microblogging service using Twitter Finagle, and dotty runs the
Dotty compiler on a set of source code files. Despite the vast difference in workloads represented
by these benchmarks, Vesta was able to predict the power usage of each with a MAPE of under
2%. We believe that some of the monitored events in these experiments are closely linked to the
fluctuation in power consumption, and Vesta is able to accurately reproduce the same power
fluctuations in its prediction.
On the other end of the precision spectrum, Figures 6e, 6d, and 6f shows the three “worst

performers”: rx-scrabble, scrabble, and scala-doku. All from Renaissance, rx-scrabble and scrabble

solve Scrabble puzzles using Rx streams and JDK streams, respectively, and scala-doku solves
Soduku puzzles using Scala collections. These three benchmarks are the only ones among the 37
that result in prediction errors over 5%. We can break them into two separate groups: insufficient

data points, and ineffective events. Benchmarks rx-scrabble and scrabble fall into the former camp
whereas scala-doku falls into the latter.

Both rx-scrabble and scrabble are among the top-3 shortest benchmarks of the entire 37 bench-
marks: each runs around a third of a second per iteration. Relative to other benchmarks, the
execution time imbalance implies that the workloads represented by rx-scrabble, scrabble are un-
derrepresented by our model, trivializing the power behavior exhibited by the “lightning fast”
duo scrabble and rx-scrabble. In order to test our hypothesis we artificially expanded the data

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.



172:12 Joseph Raskind, Timur Babakol, Khaled Mahmoud, and Yu David Liu

0 200 400 600 800 1000
Time (s)

60

80

100

Po
w

er
 (W

)

(a) xalan
(n = 0.24%)

0 200 400 600 800
Time (s)

50

75

100

125

150

Po
w

er
 (W

)

(b) finagle-chirper
(n = 0.35%)

0 25 50 75 100
Time (s)

35

40

45

50

55

Po
w

er
 (W

)

(c) do�y
(n = 0.74%)

0 10 20 30
Time (s)

75

100

125

150

175

Po
w

er
 (W

)

(d) scrabble
(n = 5.84%)

0 10 20 30 40
Time (s)

40

45

50

55

60
Po

w
er

 (W
)

(e) rx-scrabble
(n = 6.15%)

0 100 200 300 400
Time (s)

30

40

50

60

Po
w

er
 (W

)

(f) scala-doku
(n = 7.73%)

Fig. 6. Predicted Power vs Measured Power for Representative Benchmarks (The X-axis represents the elapsed
time. The Y-axis shows power consumption being predicted in Wa�s. The 3 benchmarks in the first row are
the best-performing predictions and the 3 benchmarks in second row are worst-peforming predictions. The
dashed blue line is the predicted power, and the solid black line is the measured power.)

0 100 200 300
Time (s)

100

150

200

Po
w

er
 (W

)

(a) scrabble – alternate prediction
(n = 0.31%)

0 100 200 300 400
Time (s)

40

45

50

55

60

Po
w

er
 (W

)

(b) rx-scrabble – alternate prediction
(n = 0.13%)

Fig. 7. Predicted Power vs Measured Power with Increased Data Points (Alternate scrabble and rx-scrabble

predictions that yield a MAPE of 0.31% and 0.13%, respectively when we artificially duplicate the data in
Fig. 6 10 times.)

points available to both scrabble and rx-scrabble by copying our recorded data 10 times over and
rerunning Vesta. Fig. 7 shows that adding extra data greatly increased prediction precision. As
we envision a production-strength system inspired by Vesta is likely to be trained over more and
longer benchmarks, we think the problem exhibited by scrabble and rx-scrabble is a superficial one.

Unlike rx-scrabble and scrabble, scala-doku is faced with a entirely different challenge: a lack of
effective events for prediction. For example, even though scala-doku has a similar event count and
execution time as par-mnemonics, scala-doku has a MAPE nearly 5 times greater. We believe that

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.



VESTA: Power Modeling with Language Runtime Events 172:13

ak
ka

-u
ct al
s

av
ro

ra
ba

tik
bi

oj
av

a
ch

i-s
qu

ar
e

de
c-

tre
e

do
tty

fin
ag

le
-c

hi
rp

er

fin
ag

le
-h

ttp
fj-

km
ea

ns fo
p

fu
tu

re
-g

en
et

ic
ga

us
s-m

ix
gr

ap
hc

hi h2jm
e

jyt
ho

n

lo
g-

re
gr

es
sio

n
lu

in
de

x
lu

se
ar

ch

m
ne

m
on

ics
m

ov
ie

-le
ns

na
ive

-b
ay

es
pa

ge
-ra

nk

pa
r-m

ne
m

on
ics

ph
ilo

so
ph

er
s

pm
d

re
ac

to
rs

rx
-sc

ra
bb

le
sc

al
a-

do
ku

sc
al

a-
km

ea
ns

sc
al

a-
st

m
-b

en
ch

7
sc

ra
bb

le
su

nf
lo

w
xa

la
n

zx
in

g

Benchmark

-10%

0%

10%
O

ve
rh

ea
d 

Pe
rc

en
ta

ge

Fig. 8. Vesta Reference Cycle Overhead (The Y-axis shows the number of reference cycles normalized against
that of unmonitored runs. Average n = 2.90%. )

ak
ka

-u
ct al
s

av
ro

ra
ba

tik
bi

oj
av

a
ch

i-s
qu

ar
e

de
c-

tre
e

do
tty

fin
ag

le
-c

hi
rp

er

fin
ag

le
-h

ttp
fj-

km
ea

ns fo
p

fu
tu

re
-g

en
et

ic
ga

us
s-m

ix
gr

ap
hc

hi h2jm
e

jyt
ho

n

lo
g-

re
gr

es
sio

n
lu

in
de

x
lu

se
ar

ch

m
ne

m
on

ics
m

ov
ie

-le
ns

na
ive

-b
ay

es
pa

ge
-ra

nk

pa
r-m

ne
m

on
ics

ph
ilo

so
ph

er
s

pm
d

re
ac

to
rs

rx
-sc

ra
bb

le
sc

al
a-

do
ku

sc
al

a-
km

ea
ns

sc
al

a-
st

m
-b

en
ch

7
sc

ra
bb

le
su

nf
lo

w
xa

la
n

zx
in

g

Benchmark

0%

20%

40%

O
ve

rh
ea

d 
Pe

rc
en

ta
ge

Fig. 9. Vesta Energy Overhead (The Y-axis shows the energy consumption normalized against that of
unmonitored runs. Average n = 2.05%. )

the degraded precision results from the fact that the chosen 24 events for power modeling happens
to poorly characterize scala-doku’s power behavior. It is likely that scala-doku is missing a key event
that has been filtered out through the selection process. This outlier points to a limitation of our
selection approach: our universal quantification of thresholding at its essence is performance-biased
(recall § 3.2). In other words, to make sure all 37 applications exhibit reasonable performance, the
precision of scala-doku has to suffer. With this in mind, it is worth pointing out that an error of
7.73%—the worst of all 37 benchmarks—may still be acceptable for power modeling. For instance,
most HPC-based approaches in existing literature (see § 6) report outliers with higher errors.

5.4 Overhead

Figs 8 and 9 show that, on average, Vesta runs with a performance overhead (in reference cycles)
and energy overhead, averaging at 2.90% and 2.05% respectively. Compared with Fig 1, these figures
highlight the importance of event selection: it is only through the algorithm defined in § 3.2, we
can achieve relatively low overhead.
Beyond the general trend, several observations can be made. First, our execution overhead

reports all-thread reference cycles, i.e., the overall number of reference cycles from all threads in

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.



172:14 Joseph Raskind, Timur Babakol, Khaled Mahmoud, and Yu David Liu

the benchmark, not wall-clock time. Relative to the latter, the reference cycle overhead indicates
“extra work” due to Vesta event monitoring, regardless of whether such work is on the critical path
of a multi-threaded application (all our benchmarks are). As a result, the end-to-end wall-clock
overhead of Vesta is generally less (n = 0.90%). Second, a small number of benchmarks report
negative performance overheads. We believe this results from the interaction between Vesta

monitoring and DVFS. The monitoring activities (of 24 probes) by Vesta may have intensified
the CPU activities, driving their host cores to a higher power state, i.e., operating at a higher
CPU frequency. As a result, a program may run faster. This phenomenon was reported in energy
profiler design before (e.g., [2]). Note that reference cycles—as opposed to CPU cycles—already
take clock speed into account. Third, the trend for reference cycle overhead and energy overhead
do not always correspond. According to physics, energy is the multiplication of power and time.
The metric of reference cycle count—despite the fact that it may not always directly translate
to end-to-end wall-clock time—is a time-based metric after all. For example, if we imagine two
programs with an identical execution time but one consumes twice the power of the other, then
the aforementioned program will also consume twice the energy.

5.5 Event Importance and Explainability

To gain more insight on the behavior of events, we examine the feature importance of our model.
Our metric of choice is SHAP (SHapley Additive exPlanations) values [33, 34], a high-level metric
that has rapidly gained popularity in the field of ML explanability. SHAP is based on cooperative
game theory by Shapley [46]. A positive/negative SHAP value for a feature means that the presence
of the feature influenced an increase/decrease in the outcome. The higher the absolute SHAP value
is, the more influence the given feature has over the outcome of a prediction. In the supplementary
material, we also include results based on lower-level metrics such as gain and frequency for
decision trees, with similar overall trends as SHAP.
Fig. 10a shows the (ranked) average absolute SHAP values for each feature. Fig. 10b provides

a deeper look at the top eight most important features by showing how the SHAP values are
distributed. Before we delve into the details, observe that individual SHAP values per time interval
may vary greatly, so the violin graph has a long tail. As a result, the mean (the middle vertical line)
often does not coincide at where the most data points are. This should be expected, because during
any time interval, many events may co-occur, and even the most important event may only have
limited and varying influence on power consumption. The large variance here indeed demonstrates
the challenge that Vesta has overcome: despite the highly dynamic nature of the executions where
even the most important events have varying influence across time intervals, Vesta is able to make
accurate power consumption. Specifically, we make several observations.
First, thread management plays an important role in power consumption. thread_park is

clearly the most important feature, reflected by the high average absolute SHAP value. Similarly,
thread_sleep is also a highly ranked event. This outcome is not surprising: thread management
has a large impact on system utilization. The impact of thread scheduling on energy consumption
is well known in energy-efficient computing [50], including prior empirical studies at the JVM
runtime level [43].
Second, memory access is influential on power, with SetIntField and SetByteArrayRegion

being the second and third important events for power modeling respectively. This is aligned
with the finding in HPC-based power modeling where cache misses are among the most indica-
tive HPCs for power consumption. To gain a more in-depth understanding, we zero in on the
behavior of SetByteArrayRegion. Fig. 11a shows the scatter plot on how individual feature obser-
vations and their correposnding SHAP values. Fig 11b further correlates the feature observations
with cache misses, as tracked by the underlying HPCs. Interestingly, Fig. 11a shows there is a

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.



VESTA: Power Modeling with Language Runtime Events 172:15

co
m

pi
le

d_
_m

et
ho

d_
_u

nl
oa

d
Th

ro
w

Ge
tB

yt
eA

rr
ay

El
em

en
ts

Re
le

as
eI

nt
Ar

ra
yE

le
m

en
ts

Ca
llO

bj
ec

tM
et

ho
d

Ge
tE

nv

Is
In

st
an

ce
Of

Ge
tL

on
gF

ie
ld

New
St

rin
g

co
m

pi
le

d_
_m

et
ho

d_
_lo

ad

Ca
llV

oi
dM

et
ho

d

Ge
tO

bj
ec

tA
rr

ay
El

em
en

t
sa

fe
po

in
t

m
et

ho
d_

_c
om

pi
le

Ge
tM

et
ho

dI
D

Ge
tO

bj
ec

tC
la

ss

Ge
tS

tri
ng

Le
ng

th

th
re

ad
__

sle
ep

vm
op

s gc

New
St

rin
gU

TF

Se
tB

yt
eA

rr
ay

Re
gi

on
Se

tIn
tF

ie
ld

th
re

ad
__

pa
rk

Runtime Event

0

5

10

15
Av

g 
Ab

s 
SH

AP
 V

al
ue

(a) Average Absolute SHAP Values

−20 −10 0 10 20 30 40 50
SHAP value

GetStringLength

thread__sleep

vmops

gc

NewStringUTF

SetByteArrayRegion

SetIntField

thread__park

R
un

tim
e 

E
ve

nt
s

(b) Events and SHAP Values

Fig. 10. Vesta Feature Importance. (For the first subfigure, the X-axis refers to the runtime events, and the
Y-axis refers to the average absolute SHAP value. The second subfigure is a violin graph where the X-axis
refers to the per-interval SHAP value of a given feature, and the Y-axis refers to the number of intervals with
that SHAP in violin graph. The le�most, middle, and rightmost vertical lines in each horizontal bar for each
event are the minimal, mean, and maximal SHAP values respectively. Only time intervals that the event
occurs, i.e., depth>0, are shown.)

bipartite power behavior. For lower depths, SetByteArrayRegion decreases power, whereas for
higher depths, it increases power. We think the bipartite behavior is aligned with our intuition.
SetByteArrayRegion promotes sequential access to the memory, reducing cache misses, and sub-
sequently, power. When the number of SetByteArrayRegion increases significantly, different
requests of SetByteArrayRegionmay compete for cache lines, increasing cache misses. Our exper-
iment on the co-occurring cache misses in Fig 11b appears to confirm this intuition. Lower/higher
cache misses seem to correspond with lower/higher depths of SetByteArrayRegion. Finally, ob-
serve that memory “setter” (with prefix Set-) events are more important than memory “getter”
(with Get- prefix) events on power consumption. Whereas both memory reads and writes can lead

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.



172:16 Joseph Raskind, Timur Babakol, Khaled Mahmoud, and Yu David Liu

20000 40000 60000 80000
100000

Depth

−20

−10

0

10

20

SH
AP

 v
al

ue

SetByteArrayRegion SHAP Values

25

50

75

100

125

po
w

er

(a) SHAP

10000 20000 30000 40000 50000 60000 70000 80000
Depth

0

1

2

Ca
ch

e 
M

iss
es

1e8

50

75

100

125

po
we

r

(b) Co-Occurring Cache Misses

Fig. 11. SetByteArrayRegion Behavior (Each dot in the figure is a time interval. The X-axis shows the
SetByteArrayRegion depth. The Y axis of the first subfigure shows the SHAP value, and that of the second
subfigure shows the number of cache misses in the same time interval. The colour refers to the observed
power in wa�s.)

5 10 15 20 25
Depth

0

20

40

SH
AP

 v
al

ue

gc SHAP Values

50

100

150

po
w

er

(a) gc

5 10 15 20 25
Depth

0

5

10

SH
AP

 v
al

ue
vmops SHAP Values

50

100

150

po
w

er

(b) vmops

Fig. 12. VM Internal Events

< ≥

thread__parkSetIntFieldNewStringUTF vmopsSetIntField thread__sleep...

3.00 260.00 739.00 6.00 260.00 737.00 ...

leaf53

Prediction
56.18

Fig. 13. A Decision Vesta Tree Example (The prediction path is highlighted in orange. Only the first two
tree levels are visualized, except node “leaf53” which is the leaf that is ultimately reached if one continues to
follow the orange path down the tree. The box associated with each node contains the sca�er plot of the
named feature for the given test input.)

to cache misses, memory writes may further render a cache incoherent, and subsequently putting
cache coherence protocols [49] to work and occasionally triggering write-backs, increasing power.

Third, we were at first surprised that NewStringUTF is among the most important events, espe-
cially considering the NewString event has a relatively low SHAP value. Upon further inspection,
we found that the NewStringUTF event is specific for UTF-8 encoding, whereas Java is a UTF-16

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.



VESTA: Power Modeling with Language Runtime Events 172:17

language. In other words, NewStringUTF is used in Java-C++ interactions through Java Native
Interface (JNI). Not surprisingly, a significant portion of OpenJDK—especially those for low-level
device I/O operations—was written in C++.
Fourth, VM internal events have a non-negligible impact on power consumption. According

to Fig. 10, gc and vmops are ranked 5
Cℎ and the 6Cℎ in SHAP values. A closer look at these two

events are shown in Fig. 12. Here, garbage collection tends to increase power consumption, but
there are diminishing returns. This can be seen in Fig. 12a where, as depth increases, the SHAP
value continues to increase until we go past a depth of fifteen. This means that after an intensity
level of the garbage collector is reached, the underlying system is likely already in a high power
state, and therefore further increases in GC are unlikley to change power. Similarly, vmops also has
a tendency in increasing power consumption, but its influence is relatively limited: observe that in
Fig. 12b, the majority of SHAP values are below 10, whereas for Fig. 12a, the majority of SHAP
values for gc are below 40.

A full-fledged account on explaining the power consumption based on JVM events can be
provided by the decision tree produced by Vesta, with an example shown in Fig. 13. Important
events such as thread_park , NewStringUTF, SetIntField, and SetByteArrayRegion all appear
close to the root of the decision tree, signifying their importance in decision making. Here, the
bottom right is the observation where the depth of each event is defined as a vector. By traveling
down the prediction path (illustrated in orange in the figure), the decision tree helps us understand
how Vesta eventually reaches the power prediction.

5.6 Alternative ML Models

ak
ka

-u
ct al
s

av
ro

ra
ba

tik
bi

oj
av

a
ch

i-s
qu

ar
e

de
c-

tre
e

do
tty

fin
ag

le
-c

hi
rp

er

fin
ag

le
-h

ttp
fj-

km
ea

ns fo
p

fu
tu

re
-g

en
et

ic
ga

us
s-m

ix
gr

ap
hc

hi h2jm
e

jyt
ho

n

lo
g-

re
gr

es
sio

n
lu

in
de

x
lu

se
ar

ch

m
ne

m
on

ics
m

ov
ie

-le
ns

na
ive

-b
ay

es
pa

ge
-ra

nk

pa
r-m

ne
m

on
ics

ph
ilo

so
ph

er
s

pm
d

re
ac

to
rs

rx
-sc

ra
bb

le
sc

al
a-

do
ku

sc
al

a-
km

ea
ns

sc
al

a-
st

m
-b

en
ch

7
sc

ra
bb

le
su

nf
lo

w
xa

la
n

zx
in

g

Benchmark

0%

20%

40%

60%

80%

Pe
rc

en
t E

rr
or

Fig. 14. Linear Regression-Based Power Modeling (The X-axis shows the benchmark. The Y-axis shows the
MAPE. The average n = 18.85%.)

Vesta is designed with decision trees (XGBoost) as its core ML model. We arrived at this choice
after experimenting with alternative models, all the while trying to address the goal of Challenge
IV. We now report the results based on linear regression (LR) and deep neutral networks (DNNs).

Fig. 14 shows LR would introduce high errors (average 18.85%) for the benchmarks we consider.
This result highlights the fundamental distinction between HPCs and runtime events. In contrast
with HPC approaches, it would not make sense to consider the power impact of runtime events as
additive (see Challenge IV). For example, it is indeed true that the gc event and the vmops event
may contribute to power consumption, but their combined impact on power is likely to be more
complex than, say, the combined power is 7W if a cache event contributes to 3W and a TLB event
contributes to 4W. Fig. 14 confirms the non-additivity of the power impact of runtime events.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.



172:18 Joseph Raskind, Timur Babakol, Khaled Mahmoud, and Yu David Liu

24
-1

2-
48

-1
24

-1
2-

24
-1

24
-2

4-
19

2-
48

-1
2-

96
-1

24
-1

2-
24

-4
8-

1
24

-2
4-

48
-1

24
-1

2-
19

2-
24

-9
6-

48
-1

24
-4

8-
24

-1

24
-2

4-
12

-1
92

-9
6-

48
-1

24
-1

2-
19

2-
24

-4
8-

96
-1

24
-1

2-
48

-2
4-

1

24
-2

4-
12

-4
8-

1

24
-4

8-
24

-1
92

-1
2-

96
-1

24
-1

2-
48

-2
4-

96
-1

24
-9

6-
12

-2
4-

48
-1

24
-1

2-
19

2-
96

-4
8-

24
-1

24
-2

4-
19

2-
96

-1
2-

48
-1

24
-1

2-
19

2-
96

-2
4-

48
-1

24
-4

8-
24

-9
6-

12
-1

24
-2

4-
12

-1
92

-4
8-

96
-1

24
-1

2-
24

-4
8-

19
2-

96
-1

24
-1

2-
96

-2
4-

19
2-

48
-1

24
-2

4-
96

-1
92

-1
2-

48
-1

24
-2

4-
12

-1

24
-4

8-
12

-2
4-

1

24
-2

4-
96

-1
2-

19
2-

48
-1

24
-4

8-
24

-9
6-

19
2-

12
-1

24
-2

4-
19

2-
12

-9
6-

48
-1

24
-2

4-
48

-1
92

-9
6-

12
-1

24
-1

2-
19

2-
48

-9
6-

24
-1

24
-1

2-
96

-1
92

-2
4-

48
-1

24
-4

8-
96

-2
4-

12
-1

24
-1

2-
96

-4
8-

24
-1

24
-1

2-
24

-9
6-

48
-1

24
-4

8-
96

-1
2-

19
2-

24
-1

24
-1

2-
48

-9
6-

19
2-

24
-1

24
-4

8-
12

-1
92

-9
6-

24
-1

24
-1

2-
48

-9
6-

24
-1

24
-4

8-
24

-1
92

-9
6-

12
-1

24
-4

8-
12

-1

24
-1

2-
48

-1
92

-9
6-

24
-1

Topology

0%

20%

40%

60%

Pe
rc

en
t E

rr
or

Fig. 15. Neural Network-Based Power Modeling (We present the top-40 DNN configurations with the best
prediction accuracy, ordered from the le� (the best) to right (the worst). The X-axis shows the topology
configuration, where =1 − =2 − . . . =: means the number of neurons for layer 8 is =8 where 1 ≤ 8 ≤ : . The
Y-axis shows the MAPE across all predictions for all benchmarks. The average of the 40 results n = 31.34%.)

Considering the popularity of DNNs to solve non-linearmodeling problems, we also experimented
with DNN-based power modeling. We constructed 100 different DNNs all with unique topologies;
we present the top-40 performing DNNs in Figure 15. It is discouraging that the prediction errors
are not only high, but also appear to be insensitive to the topology configuration. We must be
careful to stress that we manually selected the 100 topology configurations, and the results may not
be the best possible after exhaustive hyperparameter tuning. With the errors of these DNN results
stubbornly high and with XGBoost already producing competitive results, we are less incentivized
to exhaustively explore the DNN space.
The real take-away message here is that Vesta—built with XGBoost—does not achieve good

performance trivially by plugging runtime events into any model toolkit available. It is important
to realize that all reported results in this section are produced over the same set of benchmarks
(Dacapo and Renaissance)—indeed, the same data traces—and the same validation methodology
(: × 2 cross-validation). In other words, the good performance of Vesta results from its inherent
design choices (§ 3), it is not a coincidence of the experimental process.

5.7 Alternative Numbers of Events

The (default) Vesta model is built with all 24 events (§ 5.2). Given that these events have different
importance (Fig. 10), we now conduct a design space exploration by reducing the number of events
(features) for model building. The results are shown in Fig. 16.

Overall, around 10 events have noticeable impact on the accuracy of the model, with the top 3-5
events having significant impacts. This points to a possible customization of Vesta in real-world
development, where only a subset of events is used for model building. A word of caution is that
the accuracy shown in Fig. 16 is the average of all 37 benchmarks, and individual benchmarks may
have varying accuracy impacts. In other words, it would be premature to conclude that only the
top 10 events shown in Fig. 10 matter categorically.

5.8 Alternative Configurations across the Computing Stack

As another design space exploration, we also conducted an analysis on the accuracy of Vesta
with various alternative settings across the computing stack. Concretely, (1) we reconfigure the

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.



VESTA: Power Modeling with Language Runtime Events 172:19

1 2 3

Number of Features

0%

10%

20%

30%

40%

Pe
rc

en
t E

rr
or

(a) Model w/ Top 1-3 Fea-
tures

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Number of Features

0%

2%

4%

6%

8%

10%

Pe
rc

en
t E

rr
or

(b) Model w/ Top 4-24 Features

Fig. 16. Vesta Prediction Accuracy with Different Numbers of Features (The X-axis shows the number of
features — i.e., the number of types of events — used for model building, where a bar labeled with : means
building the model only with : number of events with the highest : absolute SHAP values reported in Fig. 10.
For example, the first bar in Fig. 16a means building the model only with the thread__park event. Due to
scale, we divide the results in 2 subfigures. The Y-axis shows the MAPE. The whisker shows the standard
deviation computed across the MAPE of 37 benchmarks. )

De
fa

ul
t

Al
t. 

GC
(S

er
ia

l)

Al
t. 

GC
(P

ar
al

le
l)

Al
t. 

GC
(Z

GC
)

Al
t. 

JIT
(X

co
m

p)

Al
t. 

JIT
(X

in
t)

Al
t. 

JD
K

(o
pe

nJ
DK

11
)

Al
t. 

Pl
at

fo
rm

Configurations

0%

2%

4%

6%

Pe
rc

en
t E

rr
or

Fig. 17. Vesta Accuracy with Different Configurations. (The X-axis shows different configurations, and
Y-axis shows the MAPE of energy consumption based on Vesta prediction. Default is the default Vesta
configuration where all results are presented hitherto. Labels with prefix Alt.GC are 3 namesake GC options.
Laberls with prefix Alt.JIT are two compilation options. The label with prefix Alt.OpenJDK refers to an
alternative OpenJDK. Alt.Platform refers to a machine with an Intel Xeon Silver 4300 v3 2.30 GHz CPU
with 40 cores, Ice Lake micro-architecture, 64GB DDR4 RAM, running Debian 6.1.55. For each alternative
configuration, the rest of se�ings beyond the explicitly stated alternative are identical to the default se�ing
in § 5.1. The whisker shows the standard deviation computed across the MAPE of 37 benchmarks.)

JVM with three alternative GCs (Serial, Parallel, ZGC), whereas the default results presented
in earlier sections come from the default GC, G1. (2) We run benchmarks with two alternative
compilation options (XComp and XInt), the two ends of spectrum of JIT design, i.e., all-method JIT
and no JIT (i.e., interpretation) respectively. (3) we run with an alternative OpenJDK version, v11.
(4) we experiemnted with a different machine, with details shown in Fig. 17.

As shown in the figure, Vesta is able to retain comparable accuracy in all alternative settings.
Note that the standard deviation shown in the figure is computed across the 37 benchmarks. What it
reflects is the diversity of benchmarks: just like our default setting, Vesta can offer better prediction
for the vast majority of benchmarks, but there are outliers. For the worst-performing configuration
ZGC (with error 2.76%), we further present the per-benchmark accuracy result in Fig. 18. With
ZGC, the worst-performing benchmarks are rx-scrabble, scala-doku, and scrabble. These three

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.



172:20 Joseph Raskind, Timur Babakol, Khaled Mahmoud, and Yu David Liu

ak
ka

-u
ct al
s

av
ro

ra
ba

tik
bi

oj
av

a
ch

i-s
qu

ar
e

de
c-

tre
e

do
tty

fin
ag

le
-c

hi
rp

er

fin
ag

le
-h

ttp
fj-

km
ea

ns fo
p

fu
tu

re
-g

en
et

ic
ga

us
s-m

ix
gr

ap
hc

hi h2jm
e

jyt
ho

n

lo
g-

re
gr

es
sio

n
lu

in
de

x
lu

se
ar

ch

m
ne

m
on

ics
m

ov
ie

-le
ns

na
ive

-b
ay

es
pa

ge
-ra

nk

pa
r-m

ne
m

on
ics

ph
ilo

so
ph

er
s

pm
d

re
ac

to
rs

rx
-sc

ra
bb

le
sc

al
a-

do
ku

sc
al

a-
km

ea
ns

sc
al

a-
st

m
-b

en
ch

7
sc

ra
bb

le
su

nf
lo

w
xa

la
n

zx
in

g

Benchmark

0%

5%

10%

15%

20%
Pe

rc
en

t E
rr

or

Fig. 18. Vesta Precision using ZGC (The Y-axis shows the MAPE of energy prediction normalized against the
actual consumption. Average n = 2.76%.)

ak
ka

-u
ct al
s

av
ro

ra
ba

tik
bi

oj
av

a
ch

i-s
qu

ar
e

de
c-

tre
e

do
tty

fin
ag

le
-c

hi
rp

er

fin
ag

le
-h

ttp
fj-

km
ea

ns fo
p

fu
tu

re
-g

en
et

ic
ga

us
s-m

ix
gr

ap
hc

hi h2jm
e

jyt
ho

n

lo
g-

re
gr

es
sio

n
lu

in
de

x
lu

se
ar

ch

m
ne

m
on

ics
m

ov
ie

-le
ns

na
ive

-b
ay

es
pa

ge
-ra

nk

pa
r-m

ne
m

on
ics

ph
ilo

so
ph

er
s

pm
d

re
ac

to
rs

rx
-sc

ra
bb

le
sc

al
a-

do
ku

sc
al

a-
km

ea
ns

sc
al

a-
st

m
-b

en
ch

7
sc

ra
bb

le
su

nf
lo

w
xa

la
n

zx
in

g

Benchmark

0%

5%

10%

15%

20%

Pe
rc

en
t E

rr
or

Fig. 19. A Reproduction Study of HPC-Based Power Modeling: Accuracy (The Y-axis shows the MAPE of
energy prediction normalized against the actual consumption. Average n = 4.81%)

benchmarks happen to be the same worst-performing benchmarks in our default setting (§ 5.3).
Unfortunately for ZGC, the prediction errors for these three benchmarks are larger than the default
setting, resulting the average MAPE across benchmarks to increase (as opposed to 1.56% for the
default model).

5.9 Other Efforts in Design Space Exploration

The supplementary material includes data on two additional sets of experiments. First, we alternate
the bucket size. In summary, the result shows a smaller bucket size (such as 50ms or 500ms) will
reduce precision, but still within or around a MAPE of 10%. The more problematic is that smaller
bucket sizes will significantly increase the standard deviation of the results. Our choice of 1s bucket
size is also consistent with prior work on HPC power modeling [7, 26, 36]. Second, recall that we
chose to set the buffer size in our implementation (§ 4) to 2048 pages. The experiments will describe
how we decided on this setting.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.



VESTA: Power Modeling with Language Runtime Events 172:21

5.10 A Comparison with HPC-based Models

Existing HPC-based power modeling systems [5, 7, 26, 36, 52] report accuracy (in MAPE) ranging
2-10%. These results provide us an empirical understanding on what the “ballpark” expectations
of an effective power model should be. The prediction error of Vesta (1.56%) is on the smaller
end of this ballpark. To further gain confidence, we conduct a reproduction study for HPC-based
power modeling in our experimental setting. The thorny issue is that none of the prior work
contains an exhaustive list of the HPCs used, and due to architectural differences between theirs
and ours, a one-on-one mapping is also difficult to establish for those they discuss. Our best effort
for approximating known HPC-based power models is to combine the modeling methodology
of McCullough et al. [36] with the HPC correlation data of Zamani and Afsahi [52]. In the same
methodology as the former, we greedily selected HPCs with the highest power correlation, except
that we used the HPC correlation provided by the latter. Following their methodology, we used
LR and built a power model that consists of 12 perf HPCs, whose names can be found in the
supplementary material.

The energy prediction results of this power model are in Fig. 19. The precision of 4.81% confirms
the MAPE range specified in the HPC-based systems. The execution time overhead and energy
overhead are both <1%, with details reported in the supplementary material.

For readers interested in alternative choices of HPCs, we have included this script in our repository
with a brief explanation on customization.

6 RELATED WORK

HPC-based power modeling has a long history. Isci and Martonosi [26] is an early work that shows
the feasibility of estimating power at execution time through piece-wise linear combinations of HPC
counts. Zamani and Afsahi [52] uses an ARMA (Autoregressive–moving-average) model to estimate
power consumption and develop a methodology for ranking the usefulness of HPCs. Bircher and
John [7] focuses on how HPCs could be used to predict power consumption of hardware subsystems
outside of the microprocessor, such as DRAM and I/O devices. McCullough et al. [36] recreates a
number of linear models and demonstrates their relative effectiveness for online modeling. They
also studied non-linear models such as Support Vector Regression and Polynomial with Lasso
Regression, where results do not show significant improvement. Bertran et al. [5] extends power
prediction models with the ability to detect power phases. The relationship between Vesta and
HPC-based approaches has been discussed in §3; a performance comparison can be seen in §5.10.

HPC-based power modeling is widely used in cycle-accurate power simulation. For CPU power
simulation, examples include Wattch [9], gem5 [6], and McPat [29]. There are also cycle-accurate
power models built for GPUs [11, 27, 28]. Power modeling for power simulation does not need to
be concerned with overhead: the simulator runs substantially longer than the program it simulates.

There is a small body of prior work that rely on OS events for power modeling. Li and John [30]
shows how OS routine invocations can be used to predict overall OS power consumption. Their
focus is on modeling the power/energy consumption of the OS principals—e.g., interrupts, inter-
process communications, and file system operations—not applications. Pathak et al. [42] developed
a power model for Android-based smartphones. Their system models the components of a smart-
phone, such as WiFi, NIC, SDCard, LCD, camera, GPS, as well as the CPU. For smartphones, their
approach is appropriate because the non-CPU components dominate the power consumption,
where system calls may be strongly correlated to the use of these non-CPU components. It is
however unclear whether their approach can generalize to our setting, a CPU/memory-centric
server-class environment.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.



172:22 Joseph Raskind, Timur Babakol, Khaled Mahmoud, and Yu David Liu

The discussion of Pathak et al. brings up a fair critique of Vesta: server-class environments also
have their additional power-hungry components—such as GPU and NIC—not modeled by Vesta in
its current form. As our benchmarks do not significantly interact with these hardware components,
they likely incur (near-constant) idle power. In other words, even if we were to attach meters to
GPUs and NICs and add their power consumption to our data for model building, the resulting
model would be identical modulo a constant.
RAPL [13] allows end users to obtain energy readings through its dedicated registers on some

CPUs, such as recent models by Intel and AMD. For some architectures, the energy consumption
stored in RAPL registers is also modeled through hardware performance counters. By categorizing
RAPL as a measurement approach in § 2, we emphasize the end-user view. RAPL reports energy
data separately for core, uncore and DRAM components, offering a modicum of explainability
about these 3 physical components. Accessing RAPL registers requires root access. Recent studies
also show [25, 31] that side channels may be formed through the shared RAPL registers, posing
security vulnerabilities. We used RAPL during training only, but this is not essential to our design:
it can be replaced by any measurement approach.

The goal of energy/power accounting systems is to distribute a global energy/power consumption
into software/hardware components, both at the OS level [20, 53] and the application level [1–3].
The latter is also related to energy profiling [16, 18, 41, 48], producing a profile that consists of
energy consumption at the granularity of architecture, thread, or software logical components.
Power modeling and power accounting are different but complementary approaches.

We borrow the phrase “split-phase” from nesC [19], a sensor network language. The phrase was
used in their language to refer to how a traditional synchronous event is split into two asynchronous
events: its start and its completion.

7 CONCLUSION

Vesta is a novel power prediction approach where JVM events are used for power modeling.
This approach has the benefit of not requiring access to low-level whole-system information,
offering logical explainability of application energy behavior, and providing high precision. Vesta
is implemented as a lightweight monitor, and the power model it builds is highly precise with small
performance and energy overhead.
Now that Vesta has established the power predictability of JVM events, there are a number of

opportunities. First, it is interesting to investigate the feasibility of curating a set of Java applications
that are sufficiently large and representative, so that the prediction of “unknown unknown” work-
loads (§ 3.5) becomes empirically effective. The answer to this question may also have implications
on (power-representative) benchmark suite design. With predictability established, improving
prediction through larger training data is a recurring motif in machine learning. Fortunately, there
are a large number of Java applications available. Second, our preliminary studies on alternative
configurations (§ 5.8) may be significantly expanded, deserving to be an empirical study of its
own. As both GC and JIT are active research topics, their possible variations, together with those
of the underlying OS/architecture, far exceed what we have experimented. Last but not least, we
wish to apply the idea behind Vesta to non-JVM runtimes. Our decision of tracking USDT probes
makes porting our implementation to other USDT-supporting languages relatively simple: BPF/BCC
already supports USDT tracing for other languages, including unmanaged runtimes such as C and
C++. Except for the data collection stage, the rest of Vesta remains the same. Implementability
however does not equate effectiveness. Due to the fundamental difference between language run-
times, especially that between managed languages and unmanaged languages, it remains to be
seen whether an accurate power model can be built with events from other runtimes.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.



VESTA: Power Modeling with Language Runtime Events 172:23

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their insightful suggestions and comments.
We are also grateful for the help from Aleksandar Prokopec during early stages of our development,
especially on Renaissance and OpenJDK. This project is sponsored by the US NSF under CNS-
1910532 and CNS-2215016.

DATA AVAILABILITY STATEMENT

Vesta is an open-source project. The source code of our system, the comparative system with
HPC-based power modeling, together with all raw data can be found at an anonymous website:
https://github.com/vesta-power-model/vesta. The supplementarymaterial can be found online [45].

REFERENCES

[1] Timur Babakol, Anthony Canino, and Yu David Liu. 2022. Eflect: Porting Energy-Aware Applications to Shared

Environments. In International Conference on Software Engineering (ICSE’22) (Pittsburgh, Pennsylvania). Association

for Computing Machinery, New York, NY, USA, 823–834. https://doi.org/10.1145/3510003.3510145

[2] Timur Babakol, Anthony Canino, Khaled Mahmoud, Rachit Saxena, and Yu David Liu. 2020. Calm energy accounting

for multithreaded Java applications. In ESEC/FSE ’20: 28th ACM Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineering, Virtual Event, USA, November 8-13, 2020, Prem Devanbu, Myra B.

Cohen, and Thomas Zimmermann (Eds.). ACM, 976–988. https://doi.org/10.1145/3368089.3409703

[3] Timur Babakol and Yu David Liu. 2024. Tensor-Aware Energy Accounting. In International Conference on Software

Engineering (ICSE’24). ACM. https://doi.org/10.1145/3597503.3639156

[4] Woongki Baek and Trishul M. Chilimbi. 2010. Green: a framework for supporting energy-conscious programming using

controlled approximation. In PLDI’10 (Toronto, Ontario, Canada). 198–209. https://doi.org/10.1145/1809028.1806620

[5] R. Bertran, M. Gonzelez, X. Martorell, N. Navarro, and E. Ayguade. 2013. A systematic methodology to generate

decomposable and responsive power models for cmps. IEEE Trans. Comput. 62, 7 (2013), 1289–1302. https://doi.org/10.

1109/tc.2012.97

[6] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness,

Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish,

Mark D. Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Comput. Archit. News 39, 2 (aug 2011), 1–7.

https://doi.org/10.1145/2024716.2024718

[7] William Lloyd Bircher and Lizy K. John. 2012. Complete System Power Estimation using processor performance events.

IEEE Trans. Comput. 61, 4 (2012), 563–577. https://doi.org/10.1109/tc.2011.47

[8] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley, Rotem Bentzur, Amer

Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han

Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben

Wiedermann. 2006. The DaCapo Benchmarks: Java Benchmarking Development and Analysis. In Proceedings of

the 21st Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and Applications

(Portland, Oregon, USA) (OOPSLA ’06). Association for Computing Machinery, New York, NY, USA, 169–190. https:

//doi.org/10.1145/1167473.1167488

[9] D. Brooks, V. Tiwari, and M. Martonosi. 2000. Wattch: a framework for architectural-level power analysis and

optimizations. In Proceedings of 27th International Symposium on Computer Architecture (ISCA’00). 83–94. https:

//doi.org/10.1145/342001.339657

[10] Thomas D. Burd and Robert W. Brodersen. 2000. Design issues for dynamic voltage scaling. In ISLPED’00. 9–14.

https://doi.org/10.1145/344166.344181

[11] Jianmin Chen, Bin Li, Ying Zhang, Lu Peng, and Jih-kwon Peir. 2011. Statistical GPU power analysis using tree-based

methods. In 2011 International Green Computing Conference and Workshops. 1–6. https://doi.org/10.1109/IGCC.2011.

6008582

[12] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining (San Francisco, California, USA) (KDD ’16).

Association for Computing Machinery, New York, NY, USA, 785–794. https://doi.org/10.1145/2939672.2939785

[13] Howard David, Eugene Gorbatov, Ulf R. Hanebutte, Rahul Khanna, and Christian Le. 2010. RAPL. In Proceedings of the

16th ACM/IEEE international symposium on Low power electronics and design. https://doi.org/10.1145/1840845.1840883

[14] Perf Events and Tool Security. [n. d.]. online document at https://www.kernel.org/doc/html/latest/admin-guide/perf-

security.html. ([n. d.]).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.

https://github.com/vesta-power-model/vesta
https://doi.org/10.1145/3510003.3510145
https://doi.org/10.1145/3368089.3409703
https://doi.org/10.1145/3597503.3639156
https://doi.org/10.1145/1809028.1806620
https://doi.org/10.1109/tc.2012.97
https://doi.org/10.1109/tc.2012.97
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/tc.2011.47
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/342001.339657
https://doi.org/10.1145/342001.339657
https://doi.org/10.1145/344166.344181
https://doi.org/10.1109/IGCC.2011.6008582
https://doi.org/10.1109/IGCC.2011.6008582
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/1840845.1840883
https://www.kernel.org/doc/html/latest/admin-guide/perf-security.html
https://www.kernel.org/doc/html/latest/admin-guide/perf-security.html


172:24 Joseph Raskind, Timur Babakol, Khaled Mahmoud, and Yu David Liu

[15] Jason Flinn and M. Satyanarayanan. 1999. Energy-Aware Adaptation for Mobile Applications. In Proceedings of the

Seventeenth ACM Symposium on Operating Systems Principles (Charleston, South Carolina, USA) (SOSP ’99). Association

for Computing Machinery, New York, NY, USA, 48–63. https://doi.org/10.1145/319151.319155

[16] J. Flinn and M. Satyanarayanan. 1999. PowerScope: a tool for profiling the energy usage of mobile applications.

In Proceedings WMCSA’99. Second IEEE Workshop on Mobile Computing Systems and Applications. 2–10. https:

//doi.org/10.1109/MCSA.1999.749272

[17] Anshul Gandhi, Kanad Ghose, Kartik Gopalan, S Hussain, Dongyoon Lee, Y Liu, Zhenhua Liu, Patrick McDaniel, Shuai

Mu, and Erez Zadok. 2022. Metrics for sustainability in data centers. In Proceedings of the 1st Workshop on Sustainable

Computer Systems Design and Implementation (HotCarbon’22). https://doi.org/10.1145/3630614.3630622

[18] X. Gao, D. Liu, D. Liu, H. Wang, and A. Stavrou. 2017. E-Android: A New Energy Profiling Tool for Smartphones. In

2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). 492–502. https://doi.org/10.1109/

ICDCS.2017.218

[19] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and David Culler. 2003. The NesC Language:

A Holistic Approach to Networked Embedded Systems. In Proceedings of the ACM SIGPLAN 2003 Conference on

Programming Language Design and Implementation (San Diego, California, USA) (PLDI ’03). Association for Computing

Machinery, New York, NY, USA, 1–11. https://doi.org/10.1145/781131.781133

[20] Liwei Guo, Tiantu Xu, Mengwei Xu, Xuanzhe Liu, and Felix Xiaozhu Lin. 2018. Power Sandbox: Power Awareness

Redefined. In Proceedings of the Thirteenth EuroSys Conference (Porto, Portugal) (EuroSys ’18). Association for Computing

Machinery, New York, NY, USA, Article 37, 15 pages. https://doi.org/10.1145/3190508.3190533

[21] Lorenz Hilty and Bernard Aebischer. 2015. ICT for Sustainability: An Emerging Research Field. Vol. 310. 3–36. https:

//doi.org/10.1007/978-3-319-09228-7_1

[22] M. Horowitz, T. Indermaur, and R. Gonzalez. 1994. Low-power digital design. In Low Power Electronics, 1994. Digest of

Technical Papers., IEEE Symposium. 8–11. https://doi.org/10.1109/LPE.1994.573184

[23] S. Hussain, P. McDaniel, A. Gandhi, K. Ghose, K. Gopalan, D. Lee, Y. Liu, Z. Liu, S. Mu, and E. Zadok. 2024. Verifiable

Sustainability in Data Centers. IEEE Security amp; Privacy 01 (mar 2024), 2–15. https://doi.org/10.1109/MSEC.2024.

3372488

[24] Ahmed Hussein, Mathias Payer, Antony Hosking, and Christopher A. Vick. 2015. Impact of GC Design on Power and

Performance for Android. In Proceedings of the 8th ACM International Systems and Storage Conference (Haifa, Israel)

(SYSTOR ’15). Association for Computing Machinery, New York, NY, USA, Article 13, 12 pages. https://doi.org/10.

1145/2757667.2757674

[25] Intel. [n. d.]. Intel RAPL Interface Advisory, online at https://www.intel.com/content/www/us/en/security-center/

advisory/intel-sa-00389.html.

[26] C. Isci and M. Martonosi. 2003. Runtime power monitoring in high-end processors: methodology and empirical

data. In Proceedings. 36th Annual IEEE/ACM International Symposium on Microarchitecture, 2003. MICRO-36. 93–104.

https://doi.org/10.1109/MICRO.2003.1253186

[27] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung Kim, Tor M. Aamodt, and Vijay Janapa

Reddi. 2013. GPUWattch: Enabling Energy Optimizations in GPGPUs. In Proceedings of the 40th Annual International

Symposium on Computer Architecture (Tel-Aviv, Israel) (ISCA ’13). Association for Computing Machinery, New York,

NY, USA, 487–498. https://doi.org/10.1145/2485922.2485964

[28] Jonathan Lew, Deval A Shah, Suchita Pati, Shaylin Cattell, Mengchi Zhang, Amruth Sandhupatla, Christopher Ng,

Negar Goli, Matthew D Sinclair, Timothy G Rogers, et al. 2019. Analyzing machine learning workloads using a detailed

GPU simulator. In 2019 IEEE international symposium on performance analysis of systems and software (ISPASS). IEEE,

151–152. https://doi.org/10.1109/ISPASS.2019.00028

[29] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen, and Norman P. Jouppi. 2009. McPAT: An

integrated power, area, and timing modeling framework for multicore and manycore architectures. In 2009 42nd Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO). 469–480. https://doi.org/10.1145/1669112.1669172

[30] Tao Li and Lizy Kurian John. 2003. Run-Time Modeling and Estimation of Operating System Power Consumption.

In Proceedings of the 2003 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer

Systems (San Diego, CA, USA) (SIGMETRICS ’03). Association for Computing Machinery, New York, NY, USA, 160–171.

https://doi.org/10.1145/781027.781048

[31] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine Easdon, Claudio Canella, and Daniel Gruss.

2021. PLATYPUS: Software-based Power Side-Channel Attacks on x86. In 2021 IEEE Symposium on Security and Privacy

(SP). 355–371. https://doi.org/10.1109/SP40001.2021.00063

[32] Kenan Liu, Gustavo Pinto, and Yu David Liu. 2015. Data-Oriented Characterization of Application-Level Energy

Optimization. In Fundamental Approaches to Software Engineering, Alexander Egyed and Ina Schaefer (Eds.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 316–331. https://doi.org/10.1007/978-3-662-46675-9_21

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.

https://doi.org/10.1145/319151.319155
https://doi.org/10.1109/MCSA.1999.749272
https://doi.org/10.1109/MCSA.1999.749272
https://doi.org/10.1145/3630614.3630622
https://doi.org/10.1109/ICDCS.2017.218
https://doi.org/10.1109/ICDCS.2017.218
https://doi.org/10.1145/781131.781133
https://doi.org/10.1145/3190508.3190533
https://doi.org/10.1007/978-3-319-09228-7_1
https://doi.org/10.1007/978-3-319-09228-7_1
https://doi.org/10.1109/LPE.1994.573184
https://doi.org/10.1109/MSEC.2024.3372488
https://doi.org/10.1109/MSEC.2024.3372488
https://doi.org/10.1145/2757667.2757674
https://doi.org/10.1145/2757667.2757674
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00389.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00389.html
https://doi.org/10.1109/MICRO.2003.1253186
https://doi.org/10.1145/2485922.2485964
https://doi.org/10.1109/ISPASS.2019.00028
https://doi.org/10.1145/1669112.1669172
https://doi.org/10.1145/781027.781048
https://doi.org/10.1109/SP40001.2021.00063
https://doi.org/10.1007/978-3-662-46675-9_21


VESTA: Power Modeling with Language Runtime Events 172:25

[33] Scott M. Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M. Prutkin, Bala Nair, Ronit Katz, Jonathan

Himmelfarb, Nisha Bansal, and Su-In Lee. 2020. From local explanations to global understanding with explainable AI

for trees. Nature Machine Intelligence 2, 1 (2020), 56–67. https://doi.org/10.1038/s42256-019-0138-9

[34] Scott M. Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting Model Predictions. In Advances in

Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December

4-9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus,

S. V. N. Vishwanathan, and Roman Garnett (Eds.). 4765–4774. https://proceedings.neurips.cc/paper/2017/hash/

8a20a8621978632d76c43dfd28b67767-Abstract.html

[35] Eric Masanet, Arman Shehabi, Nuoa Lei, Sarah Smith, and Jonathan Koomey. 2020. Recalibrating global data center

energy-use estimates. Science 367, 6481 (2020), 984–986. https://doi.org/10.1126/science.aba3758

[36] John C. McCullough and Yuvraj Agarwal. 2011. Evaluating the Effectiveness of Model-Based Power Characterization.

In 2011 USENIX Annual Technical Conference (USENIX ATC 11). USENIX Association, Portland, OR. https://www.

usenix.org/conference/usenixatc11/evaluating-effectiveness-model-based-power-characterization-0

[37] Andreas Merkel, Jan Stoess, and Frank Bellosa. 2010. Resource-Conscious Scheduling for Energy Efficiency onMulticore

Processors. In Proceedings of the 5th European Conference on Computer Systems (Paris, France) (EuroSys ’10). Association

for Computing Machinery, New York, NY, USA, 153–166. https://doi.org/10.1145/1755913.1755930

[38] F. Montevecchi, T. Stickler, R. Hintemann, and S. Hinterholzer. 2020. Energy-efficient cloud computing technologies

and policies for an eco-friendly cloud market, https://digital-strategy.ec.europa.eu/en/ library/energy-efficient-cloud-

computing-technologies-and-policies-eco-friendly-cloud-market.

[39] Office of Energy Efficiency & Renewable Energy. 2023. Data Centers and Servers. https://www.energy.gov/eere/

buildings/data-centers-and-servers.

[40] Oracle. 2023. DTrace Probes in HotSpot VM. https://docs.oracle.com/javase/8/docs/technotes/guides/vm/dtrace.html.

[41] Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. 2012. Where is the Energy Spent Inside My App?: Fine Grained

Energy Accounting on Smartphones with Eprof. In Proceedings of the 7th ACM European Conference on Computer

Systems (Bern, Switzerland) (EuroSys ’12). 29–42.

[42] Abhinav Pathak, Y. Charlie Hu, Ming Zhang, Paramvir Bahl, and Yi-Min Wang. 2011. Fine-Grained Power Modeling

for Smartphones Using System Call Tracing. In Proceedings of the Sixth Conference on Computer Systems (Salzburg,

Austria) (EuroSys ’11). Association for Computing Machinery, New York, NY, USA, 153–168. https://doi.org/10.1145/

1966445.1966460

[43] Gustavo Pinto, Fernando Castor, and Yu David Liu. 2014. Understanding Energy Behaviors of Thread Management

Constructs. In Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages

Applications (Portland, Oregon, USA) (OOPSLA ’14). Association for Computing Machinery, New York, NY, USA,

345–360. https://doi.org/10.1145/2660193.2660235

[44] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr Tůma, Martin Studener, Lubomír Bulej,

Yudi Zheng, Alex Villazón, Doug Simon, Thomas Würthinger, and Walter Binder. 2019. Renaissance: Benchmarking

Suite for Parallel Applications on the JVM. In Proceedings of the 40th ACM SIGPLAN Conference on Programming

Language Design and Implementation (Phoenix, AZ, USA) (PLDI 2019). Association for Computing Machinery, New

York, NY, USA, 31–47. https://doi.org/10.1145/3314221.3314637

[45] Joseph Raskind, Timur Babakol, Khaled Mahmoud, and Yu David Liu. [n. d.]. Vesta Supplementary Material (https:

//www.cs.binghamton.edu/~davidl/papers/PLDI24Sup.pdf ). Technical Report.

[46] L. S. Shapley. 1953. A value for n-person games. Contributions to the Theory of Games (AM-28), Volume II (1953),

307–318. https://doi.org/10.1515/9781400881970-018

[47] Marina Shimchenko, Mihail Popov, and Tobias Wrigstad. 2022. Analysing and Predicting Energy Consumption of

Garbage Collectors in OpenJDK. In Proceedings of the 19th International Conference on Managed Programming Languages

and Runtimes. 3–15. https://doi.org/10.1145/3546918.3546925

[48] A. Sinha and A. P. Chandrakasan. 2001. JouleTrack-a Web based tool for software energy profiling. In Proceedings of

the 38th Design Automation Conference (DAC’01). 220–225. https://doi.org/10.1145/378239.378467

[49] P. Sweazey and A. J. Smith. 1986. A Class of Compatible Cache Consistency Protocols and Their Support by the IEEE

Futurebus. In Proceedings of the 13th Annual International Symposium on Computer Architecture (Tokyo, Japan) (ISCA

’86). IEEE Computer Society Press, Washington, DC, USA, 414–423. https://doi.org/10.1145/17356.17404

[50] Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. 1994. Scheduling for Reduced CPU Energy. In OSDI’94.

USENIX Association, Monterey, CA. https://doi.org/10.5555/1267638.1267640

[51] Xingfu Wu and Valerie Taylor. 2016. Utilizing Hardware Performance Counters to Model and Optimize the Energy and

Performance of Large Scale Scientific Applications on Power-Aware Supercomputers. In 2016 IEEE International Parallel

and Distributed Processing Symposium Workshops (IPDPSW). 1180–1189. https://doi.org/10.1109/IPDPSW.2016.78

[52] Reza Zamani and Ahmad Afsahi. 2012. A study of hardware performance monitoring counter selection in power

modeling of computing systems. In 2012 International Green Computing Conference (IGCC). 1–10. https://doi.org/10.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.

https://doi.org/10.1038/s42256-019-0138-9
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://doi.org/10.1126/science.aba3758
https://www.usenix.org/conference/usenixatc11/evaluating-effectiveness-model-based-power-characterization-0
https://www.usenix.org/conference/usenixatc11/evaluating-effectiveness-model-based-power-characterization-0
https://doi.org/10.1145/1755913.1755930
https://digital-strategy.ec.europa.eu/en/library/energy-efficient-cloud-computing-technologies-and-policies-eco-friendly-cloud-market
https://digital-strategy.ec.europa.eu/en/library/energy-efficient-cloud-computing-technologies-and-policies-eco-friendly-cloud-market
https://www.energy.gov/eere/buildings/data-centers-and-servers
https://www.energy.gov/eere/buildings/data-centers-and-servers
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/dtrace.html
https://doi.org/10.1145/1966445.1966460
https://doi.org/10.1145/1966445.1966460
https://doi.org/10.1145/2660193.2660235
https://doi.org/10.1145/3314221.3314637
https://www.cs.binghamton.edu/~davidl/papers/PLDI24Sup.pdf
https://www.cs.binghamton.edu/~davidl/papers/PLDI24Sup.pdf
https://doi.org/10.1515/9781400881970-018
https://doi.org/10.1145/3546918.3546925
https://doi.org/10.1145/378239.378467
https://doi.org/10.1145/17356.17404
https://doi.org/10.5555/1267638.1267640
https://doi.org/10.1109/IPDPSW.2016.78
https://doi.org/10.1109/IGCC.2012.6322289
https://doi.org/10.1109/IGCC.2012.6322289


172:26 Joseph Raskind, Timur Babakol, Khaled Mahmoud, and Yu David Liu

1109/IGCC.2012.6322289

[53] Heng Zeng, Carla S. Ellis, Alvin R. Lebeck, and Amin Vahdat. 2003. Currentcy: A Unifying Abstraction for Ex-

pressing Energy. In 2003 USENIX Annual Technical Conference (USENIX ATC 03). USENIX Association, San Antonio,

TX. https://www.usenix.org/conference/2003-usenix-annual-technical-conference/currentcy-unifying-abstraction-

expressing-energy

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 172. Publication date: June 2024.

https://doi.org/10.1109/IGCC.2012.6322289
https://doi.org/10.1109/IGCC.2012.6322289
https://www.usenix.org/conference/2003-usenix-annual-technical-conference/currentcy-unifying-abstraction-expressing-energy
https://www.usenix.org/conference/2003-usenix-annual-technical-conference/currentcy-unifying-abstraction-expressing-energy

	Abstract
	1 Introduction
	2 Motivations
	2.1 Tracking Power across the Systems Stack
	2.2 Challenges with Runtime-Level Power Modeling

	3 Vesta Design
	3.1 Overview
	3.2 Event Selection
	3.3 Split-Phase Event Synthesis
	3.4 Model Building
	3.5 Applicability and Use Scenarios

	4 Vesta Implementation
	5 Vesta Evaluation
	5.1 Experimental Settings
	5.2 Event Selection
	5.3 Prediction
	5.4 Overhead
	5.5 Event Importance and Explainability
	5.6 Alternative ML Models
	5.7 Alternative Numbers of Events
	5.8 Alternative Configurations across the Computing Stack
	5.9 Other Efforts in Design Space Exploration
	5.10 A Comparison with HPC-based Models

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

